博客
关于我
hive窗口函数练习题
阅读量:615 次
发布时间:2019-03-13

本文共 21800 字,大约阅读时间需要 72 分钟。

一、第一套练习

需求:

1、求用户明细并统计每天的用户总数
2、计算从第一天到现在的所有 score 大于80分的用户总数
3、计算每个用户到当前日期分数大于80的天数

test_window.txt数据:

20191020,11111,8520191020,22222,8320191020,33333,8620191021,11111,8720191021,22222,6520191021,33333,9820191022,11111,6720191022,22222,3420191022,33333,8820191023,11111,9920191023,22222,33

建表:

0: jdbc:hive2://hadoop:11240> create table test_window(logday string,userid string,score int). . . . . . . . . . . . . . > row format delimited. . . . . . . . . . . . . . > fields terminated by ',';0: jdbc:hive2://hadoop:11240> load data local inpath '/home/xiaokang/hivedata/test_window.txt'. . . . . . . . . . . . . . > into table test_window;0: jdbc:hive2://hadoop:11240> select * from test_window;+---------------------+---------------------+--------------------+| test_window.logday  | test_window.userid  | test_window.score  |+---------------------+---------------------+--------------------+| 20191020            | 11111               | 85                 || 20191020            | 22222               | 83                 || 20191020            | 33333               | 86                 || 20191021            | 11111               | 87                 || 20191021            | 22222               | 65                 || 20191021            | 33333               | 98                 || 20191022            | 11111               | 67                 || 20191022            | 22222               | 34                 || 20191022            | 33333               | 88                 || 20191023            | 11111               | 99                 || 20191023            | 22222               | 33                 |+---------------------+---------------------+--------------------+

1、求用户明细并统计每天的用户总数

0: jdbc:hive2://hadoop:11240> select *,count()over(partition by logday)as day_total from test_window;+---------------------+---------------------+--------------------+------------+| test_window.logday  | test_window.userid  | test_window.score  | day_total  |+---------------------+---------------------+--------------------+------------+| 20191020            | 33333               | 86                 | 3          || 20191020            | 22222               | 83                 | 3          || 20191020            | 11111               | 85                 | 3          || 20191021            | 33333               | 98                 | 3          || 20191021            | 22222               | 65                 | 3          || 20191021            | 11111               | 87                 | 3          || 20191022            | 33333               | 88                 | 3          || 20191022            | 22222               | 34                 | 3          || 20191022            | 11111               | 67                 | 3          || 20191023            | 22222               | 33                 | 2          || 20191023            | 11111               | 99                 | 2          |+---------------------+---------------------+--------------------+------------+

2、计算从第一天到现在的所有 score 大于80分的用户总数

0: jdbc:hive2://hadoop:11240> select *,count()over(order by logday rows between unbounded preceding and current row) as total from test_window where score>80;+---------------------+---------------------+--------------------+--------+| test_window.logday  | test_window.userid  | test_window.score  | total  |+---------------------+---------------------+--------------------+--------+| 20191020            | 33333               | 86                 | 1      || 20191020            | 22222               | 83                 | 2      || 20191020            | 11111               | 85                 | 3      || 20191021            | 33333               | 98                 | 4      || 20191021            | 11111               | 87                 | 5      || 20191022            | 33333               | 88                 | 6      || 20191023            | 11111               | 99                 | 7      |+---------------------+---------------------+--------------------+--------+

3、计算每个用户到当前日期分数大于80的天数

0: jdbc:hive2://hadoop:11240> select *,count()over(partition by userid order by logday rows between unbounded preceding and current row) as total. . . . . . . . . . . . . . > from test_window where score>80 order by logday,userid;+---------------------+---------------------+--------------------+--------+| test_window.logday  | test_window.userid  | test_window.score  | total  |+---------------------+---------------------+--------------------+--------+| 20191020            | 11111               | 85                 | 1      || 20191020            | 22222               | 83                 | 1      || 20191020            | 33333               | 86                 | 1      || 20191021            | 11111               | 87                 | 2      || 20191021            | 33333               | 98                 | 2      || 20191022            | 33333               | 88                 | 3      || 20191023            | 11111               | 99                 | 3      |+---------------------+---------------------+--------------------+--------+

二、第二套练习

需求:

1、查询在2017年4月份购买过的顾客及总人数
2、查询顾客的购买明细及月购买总额
3、查询顾客的购买明细及到目前为止每个顾客购买总金额
4、查询顾客上次的购买时间----lag()over()偏移量分析函数的运用

数据:

jack,2017-01-01,10tony,2017-01-02,15jack,2017-02-03,23tony,2017-01-04,29jack,2017-01-05,46jack,2017-04-06,42tony,2017-01-07,50jack,2017-01-08,55mart,2017-04-08,62mart,2017-04-09,68neil,2017-05-10,12mart,2017-04-11,75neil,2017-06-12,80mart,2017-04-13,94

建表:

0: jdbc:hive2://hadoop:11240> create table business(name string,orderdate string,cost int). . . . . . . . . . . . . . > row format delimited. . . . . . . . . . . . . . > fields terminated by ',';0: jdbc:hive2://hadoop:11240> load data local inpath "/home/xiaokang/hivedata/business.txt". . . . . . . . . . . . . . > into table business;0: jdbc:hive2://hadoop:11240> select * from business;+----------------+---------------------+----------------+| business.name  | business.orderdate  | business.cost  |+----------------+---------------------+----------------+| jack           | 2017-01-01          | 10             || tony           | 2017-01-02          | 15             || jack           | 2017-02-03          | 23             || tony           | 2017-01-04          | 29             || jack           | 2017-01-05          | 46             || jack           | 2017-04-06          | 42             || tony           | 2017-01-07          | 50             || jack           | 2017-01-08          | 55             || mart           | 2017-04-08          | 62             || mart           | 2017-04-09          | 68             || neil           | 2017-05-10          | 12             || mart           | 2017-04-11          | 75             || neil           | 2017-06-12          | 80             || mart           | 2017-04-13          | 94             |+----------------+---------------------+----------------+

1、查询在2017年4月份购买过的顾客及总人数

在本例中:

  • over()必须跟在聚合函数(本例中count())后面,over()叫做开窗函数。
  • 开窗的意义在于它开了一个窗口,这个窗口叫做数据集。
  • 开窗的作用范围:仅仅是给前面的聚合函数count()使用的
  • 开窗等于开一部分数据集出来
  • over()中为空,表示对整个数据集开窗
0: jdbc:hive2://hadoop:11240> select name,count(*) over(). . . . . . . . . . . . . . > from business. . . . . . . . . . . . . . > where substring(orderdate,1,7)='2017-04'+-------+-----------------+| name  | count_window_0  |+-------+-----------------+| mart  | 5               || mart  | 5               || mart  | 5               || mart  | 5               || jack  | 5               |+-------+-----------------+

2、查询顾客的购买明细及所有顾客的购买总额

所有人的花费求和

0: jdbc:hive2://hadoop:11240> select *,sum(cost)over() . . . . . . . . . . . . . . > from business;+----------------+---------------------+----------------+---------------+| business.name  | business.orderdate  | business.cost  | sum_window_0  |+----------------+---------------------+----------------+---------------+| mart           | 2017-04-13          | 94             | 661           || neil           | 2017-06-12          | 80             | 661           || mart           | 2017-04-11          | 75             | 661           || neil           | 2017-05-10          | 12             | 661           || mart           | 2017-04-09          | 68             | 661           || mart           | 2017-04-08          | 62             | 661           || jack           | 2017-01-08          | 55             | 661           || tony           | 2017-01-07          | 50             | 661           || jack           | 2017-04-06          | 42             | 661           || jack           | 2017-01-05          | 46             | 661           || tony           | 2017-01-04          | 29             | 661           || jack           | 2017-02-03          | 23             | 661           || tony           | 2017-01-02          | 15             | 661           || jack           | 2017-01-01          | 10             | 661           |+----------------+---------------------+----------------+---------------+

3、上述的场景,要将 cost 按照日期进行累加

0: jdbc:hive2://hadoop:11240> select orderdate,cost,sum(cost) over(order by orderdate). . . . . . . . . . . . . . > from business;+-------------+-------+---------------+|  orderdate  | cost  | sum_window_0  |+-------------+-------+---------------+| 2017-01-01  | 10    | 10            || 2017-01-02  | 15    | 25            || 2017-01-04  | 29    | 54            || 2017-01-05  | 46    | 100           || 2017-01-07  | 50    | 150           || 2017-01-08  | 55    | 205           || 2017-02-03  | 23    | 228           || 2017-04-06  | 42    | 270           || 2017-04-08  | 62    | 332           || 2017-04-09  | 68    | 400           || 2017-04-11  | 75    | 475           || 2017-04-13  | 94    | 569           || 2017-05-10  | 12    | 581           || 2017-06-12  | 80    | 661           |+-------------+-------+---------------+

4、查询顾客的购买明细以及每位顾客的总花费

按人分组求和

0: jdbc:hive2://hadoop:11240> select *,sum(cost) over(distribute by name). . . . . . . . . . . . . . > from business;+----------------+---------------------+----------------+---------------+| business.name  | business.orderdate  | business.cost  | sum_window_0  |+----------------+---------------------+----------------+---------------+| jack           | 2017-01-05          | 46             | 176           || jack           | 2017-01-08          | 55             | 176           || jack           | 2017-01-01          | 10             | 176           || jack           | 2017-04-06          | 42             | 176           || jack           | 2017-02-03          | 23             | 176           || mart           | 2017-04-13          | 94             | 299           || mart           | 2017-04-11          | 75             | 299           || mart           | 2017-04-09          | 68             | 299           || mart           | 2017-04-08          | 62             | 299           || neil           | 2017-05-10          | 12             | 92            || neil           | 2017-06-12          | 80             | 92            || tony           | 2017-01-04          | 29             | 94            || tony           | 2017-01-02          | 15             | 94            || tony           | 2017-01-07          | 50             | 94            |+----------------+---------------------+----------------+---------------+

5、查询顾客的购买明细及到目前为止每个顾客购买总金额

按人分组,按时间排序,花费累加

# 方法一:0: jdbc:hive2://hadoop:11240> select * ,sum(cost) over(distribute by name sort by orderdate). . . . . . . . . . . . . . > from business;+----------------+---------------------+----------------+---------------+| business.name  | business.orderdate  | business.cost  | sum_window_0  |+----------------+---------------------+----------------+---------------+| jack           | 2017-01-01          | 10             | 10            || jack           | 2017-01-05          | 46             | 56            || jack           | 2017-01-08          | 55             | 111           || jack           | 2017-02-03          | 23             | 134           || jack           | 2017-04-06          | 42             | 176           || mart           | 2017-04-08          | 62             | 62            || mart           | 2017-04-09          | 68             | 130           || mart           | 2017-04-11          | 75             | 205           || mart           | 2017-04-13          | 94             | 299           || neil           | 2017-05-10          | 12             | 12            || neil           | 2017-06-12          | 80             | 92            || tony           | 2017-01-02          | 15             | 15            || tony           | 2017-01-04          | 29             | 44            || tony           | 2017-01-07          | 50             | 94            |+----------------+---------------------+----------------+---------------+
#方法二:0: jdbc:hive2://hadoop:11240> select *,. . . . . . . . . . . . . . > sum(cost). . . . . . . . . . . . . . > over(partition by name. . . . . . . . . . . . . . > order by orderdate rows between unbounded preceding and current row). . . . . . . . . . . . . . > as total_amount. . . . . . . . . . . . . . > from business;+----------------+---------------------+----------------+---------------+| business.name  | business.orderdate  | business.cost  | total_amount  |+----------------+---------------------+----------------+---------------+| jack           | 2017-01-01          | 10             | 10            || jack           | 2017-01-05          | 46             | 56            || jack           | 2017-01-08          | 55             | 111           || jack           | 2017-02-03          | 23             | 134           || jack           | 2017-04-06          | 42             | 176           || mart           | 2017-04-08          | 62             | 62            || mart           | 2017-04-09          | 68             | 130           || mart           | 2017-04-11          | 75             | 205           || mart           | 2017-04-13          | 94             | 299           || neil           | 2017-05-10          | 12             | 12            || neil           | 2017-06-12          | 80             | 92            || tony           | 2017-01-02          | 15             | 15            || tony           | 2017-01-04          | 29             | 44            || tony           | 2017-01-07          | 50             | 94            |+----------------+---------------------+----------------+---------------+

6、查询顾客上次的购买时间----lag()over()偏移量分析函数的运用

0: jdbc:hive2://hadoop:11240> select *,#如果上次的购买时间为null,将其处理为1970-01-01. . . . . . . . . . . . . . > lag(orderdate,1,'1970-01-01') over(partition by name order by orderdate) last_date. . . . . . . . . . . . . . > from business;+----------------+---------------------+----------------+-------------+| business.name  | business.orderdate  | business.cost  |  last_date  |+----------------+---------------------+----------------+-------------+| jack           | 2017-01-01          | 10             | 1970-01-01  || jack           | 2017-01-05          | 46             | 2017-01-01  || jack           | 2017-01-08          | 55             | 2017-01-05  || jack           | 2017-02-03          | 23             | 2017-01-08  || jack           | 2017-04-06          | 42             | 2017-02-03  || mart           | 2017-04-08          | 62             | 1970-01-01  || mart           | 2017-04-09          | 68             | 2017-04-08  || mart           | 2017-04-11          | 75             | 2017-04-09  || mart           | 2017-04-13          | 94             | 2017-04-11  || neil           | 2017-05-10          | 12             | 1970-01-01  || neil           | 2017-06-12          | 80             | 2017-05-10  || tony           | 2017-01-02          | 15             | 1970-01-01  || tony           | 2017-01-04          | 29             | 2017-01-02  || tony           | 2017-01-07          | 50             | 2017-01-04  |+----------------+---------------------+----------------+-------------+

7、查询顾客下一次的购买时间

0: jdbc:hive2://hadoop:11240> select *,. . . . . . . . . . . . . . > lead(orderdate,1,'9999-99-99') over(partition by name order by orderdate) last_date. . . . . . . . . . . . . . > from business;+----------------+---------------------+----------------+-------------+| business.name  | business.orderdate  | business.cost  |  last_date  |+----------------+---------------------+----------------+-------------+| jack           | 2017-01-01          | 10             | 2017-01-05  || jack           | 2017-01-05          | 46             | 2017-01-08  || jack           | 2017-01-08          | 55             | 2017-02-03  || jack           | 2017-02-03          | 23             | 2017-04-06  || jack           | 2017-04-06          | 42             | 9999-99-99  || mart           | 2017-04-08          | 62             | 2017-04-09  || mart           | 2017-04-09          | 68             | 2017-04-11  || mart           | 2017-04-11          | 75             | 2017-04-13  || mart           | 2017-04-13          | 94             | 9999-99-99  || neil           | 2017-05-10          | 12             | 2017-06-12  || neil           | 2017-06-12          | 80             | 9999-99-99  || tony           | 2017-01-02          | 15             | 2017-01-04  || tony           | 2017-01-04          | 29             | 2017-01-07  || tony           | 2017-01-07          | 50             | 9999-99-99  |+----------------+---------------------+----------------+-------------+

三、第三套练习

需求:

1、每门学科学生成绩排名(是否并列排名、空位排名三种实现)
2、每门学科成绩排名top n的学生

score.txt

name	subject	score孙悟空	语文	87孙悟空	数学	95孙悟空	英语	68大海	语文	94大海	数学	56大海	英语	84宋宋	语文	64宋宋	数学	86宋宋	英语	84婷婷	语文	65婷婷	数学	85婷婷	英语	78

建表:

0: jdbc:hive2://hadoop:11240> create table score(name string,subject string,score int). . . . . . . . . . . . . . > row format delimited fields terminated by "\t";0: jdbc:hive2://hadoop:11240> load data local inpath '/home/xiaokang/hivedata/score.txt' into table score;0: jdbc:hive2://hadoop:11240> select * from score;+-------------+----------------+--------------+| score.name  | score.subject  | score.score  |+-------------+----------------+--------------+| 孙悟空         | 语文             | 87           || 孙悟空         | 数学             | 95           || 孙悟空         | 英语             | 68           || 大海          | 语文             | 94           || 大海          | 数学             | 56           || 大海          | 英语             | 84           || 宋宋          | 语文             | 64           || 宋宋          | 数学             | 86           || 宋宋          | 英语             | 84           || 婷婷          | 语文             | 65           || 婷婷          | 数学             | 85           || 婷婷          | 英语             | 78           |+-------------+----------------+--------------+

1、每门学科学生成绩排名(是否并列排名、空位排名三种实现)

  • row_number()按照值排序时产生一个自增编号,不会重复(如:1、2、3、4、5、6)
  • rank() 按照值排序时产生一个自增编号,值相等时会重复,会产生空位(如:1、2、3、3、3、6)
  • dense_rank() 按照值排序时产生一个自增编号,值相等时会重复,不会产生空位(如:1、2、3、3、3、4)
0: jdbc:hive2://hadoop:11240> select *,. . . . . . . . . . . . . . > row_number()over(partition by subject order by score desc) as row_number_method,. . . . . . . . . . . . . . > rank()over(partition by subject order by score desc) as rank_method,. . . . . . . . . . . . . . > dense_rank()over(partition by subject order by score desc) as dense_rank_method. . . . . . . . . . . . . . > from score;+-------------+----------------+--------------+--------------------+--------------+--------------------+| score.name  | score.subject  | score.score  | row_number_method  | rank_method  | dense_rank_method  |+-------------+----------------+--------------+--------------------+--------------+--------------------+| 孙悟空         | 数学             | 95           | 1                  | 1            | 1                  || 宋宋          | 数学             | 86           | 2                  | 2            | 2                  || 婷婷          | 数学             | 85           | 3                  | 3            | 3                  || 大海          | 数学             | 56           | 4                  | 4            | 4                  || 宋宋          | 英语             | 84           | 1                  | 1            | 1                  || 大海          | 英语             | 84           | 2                  | 1            | 1                  || 婷婷          | 英语             | 78           | 3                  | 3            | 2                  || 孙悟空         | 英语             | 68           | 4                  | 4            | 3                  || 大海          | 语文             | 94           | 1                  | 1            | 1                  || 孙悟空         | 语文             | 87           | 2                  | 2            | 2                  || 婷婷          | 语文             | 65           | 3                  | 3            | 3                  || 宋宋          | 语文             | 64           | 4                  | 4            | 4                  |+-------------+----------------+--------------+--------------------+--------------+--------------------+

2、每门学科成绩排名前三的学生

0: jdbc:hive2://hadoop:11240> select * from (. . . . . . . . . . . . . . > select *,. . . . . . . . . . . . . . > row_number() over(partition by subject order by score desc) as rmp. . . . . . . . . . . . . . > from score. . . . . . . . . . . . . . > ) as t. . . . . . . . . . . . . . > where t.rmp<=3;+---------+------------+----------+--------+| t.name  | t.subject  | t.score  | t.rmp  |+---------+------------+----------+--------+| 孙悟空     | 数学         | 95       | 1      || 宋宋      | 数学         | 86       | 2      || 婷婷      | 数学         | 85       | 3      || 宋宋      | 英语         | 84       | 1      || 大海      | 英语         | 84       | 2      || 婷婷      | 英语         | 78       | 3      || 大海      | 语文         | 94       | 1      || 孙悟空     | 语文         | 87       | 2      || 婷婷      | 语文         | 65       | 3      |+---------+------------+----------+--------+

转载地址:http://xnpaz.baihongyu.com/

你可能感兴趣的文章
MYSQL、SQL Server、Oracle数据库排序空值null问题及其解决办法
查看>>
mysql一个字段为空时使用另一个字段排序
查看>>
MySQL一个表A中多个字段关联了表B的ID,如何关联查询?
查看>>
MYSQL一直显示正在启动
查看>>
MySQL一站到底!华为首发MySQL进阶宝典,基础+优化+源码+架构+实战五飞
查看>>
MySQL万字总结!超详细!
查看>>
Mysql下载以及安装(新手入门,超详细)
查看>>
MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
查看>>
MySQL不同字符集及排序规则详解:业务场景下的最佳选
查看>>
Mysql不同官方版本对比
查看>>
MySQL与Informix数据库中的同义表创建:深入解析与比较
查看>>
mysql与mem_细说 MySQL 之 MEM_ROOT
查看>>
MySQL与Oracle的数据迁移注意事项,另附转换工具链接
查看>>
mysql丢失更新问题
查看>>
MySQL两千万数据优化&迁移
查看>>
MySql中 delimiter 详解
查看>>
MYSQL中 find_in_set() 函数用法详解
查看>>
MySQL中auto_increment有什么作用?(IT枫斗者)
查看>>
MySQL中B+Tree索引原理
查看>>
mysql中cast() 和convert()的用法讲解
查看>>